Week 6: Vacuum Systems
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Vacuum Systems: Who cares?

e Why do we care about vacuum systems? Only because MS can’t
be done without them!

¢ You may recall that the first advances in MS were due to the
ability to make a decent vacuum.

e Why? It’s all about the ‘mean free path’ A:

path length = vz
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particle density = N/V \ collision cross section = 7(r,
where Nis number of + 1,)2 where r;and r,are
particles and Vis volume the radii of the colliding
particles 4




Collision Cross Section

e The collision cross section is an important concept, particularly
in ion mobility.
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e Notice how we are assuming that the colliding particles are
spherical..hmmmm....



The Mean Free Path

e The mean free path is the average distance that a particle will
travel betore colliding with another particle.

e Example: Lets say our tavorite ion [ DEREK+H]" is tlying though
a 1 m TOF tube (radius 0.1 m) at a pressure of 5x10® Torr of N, at
room temp.

e First, lets calculate the number of particles, N.

P (torr — atm) V(m3 > L)

> /

( )( )
( o )




Mean Free Path Calc. Cont.

e Now we can calculate the particle density:

e How about the collision cross section:
( ) (( ) ( )

e Finally, the mean free path:




Measuring . ow Vacuum

e Measurement of low vacuum is relatively easy because there is
still plenty of gas around...

e Pirani gauges simply measure resistance in a
(usually platinum) wire exposed to vacuum.
Current heats the wire up (resistance goes up),
collisions with ambient gas cool the wire down
(resistance goes down).

e Obviously no good it there isn’t enough gas around to cause a
measurable change in resistance.

e Pirani gauges are very accurate down to about 10 torr.



Measuring High Vacuums

e These days, MS instrument operate at ‘high vacuum’, i.e.
anything lower than 107 torr.

e The cheapest high vacuum measuring device is a Penning or
Cold Cathode gauge.

e Electrons are generated via discharge in a cold cathode. Electrons
tlow to the anode and collide with gas particles, ionizing them.
These ions are collected in an ‘ion collector’ (negatively charged

cup). ¢ These gauges have upper pressure limit because it

there is too much recombination, there is no current.

¢ On the other hand, if pressure too low, no
discharge at cathode.

e Effective measurement range: 10 — 10 torr




Measuring High Vacuums Cont.

e The second cheapest, the Bayard-Alpert or Hot Cathode gauge
works on a similar principle:

e Electrons generated from a
G heated filament ionize gas, which
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e Pressure range = 10~ to 1010
torr.
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Making a low Vacuum

¢ Because of how we are going to make a high vacuum, we first
need to make a low vacuum, maybe 5 x 10 torr or so...

e To do this, we use a Rotary Vane pump:
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e These pumps have a slow pumping speed (about 3 [./min) but
can handle a lot of gas/volume (i.e. they can run at high pressure).

e They are also exceedingly tough.
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Making High Vacuum

¢ Once we have a low / medium vacuum, we can use high tlow
pumping devices to make a high vacuum.

e The most common type is the turbomolecular pump, which is
built like a jet engine:

e The mechanism is simple: Gas particles
diffuse into the fan blades and are
physically knocked away tfrom the
vacuum and into the pump.

e Successively flatter blades ensure that
the particle keeps going in the right
direction.
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Turbomolecular Pumps

e The main advantage of tubopumps is that they require relatively
little power (- 100W) and can generate an oil-free vacuum.

e The main disadvantage is that they are expensive and prone to
sudden breakage (not unlike a hard drive or anything else that
spins).

e Pumping speed is around 300 I /sec.

e The tan blades spin at 50 — 60,000 rpm. Obviously, we cannot do
this at high pressure!
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Cryopumps

e Need a super-high vacuum? Try a cryopump:
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e These pumps work by condensing gas onto a surface that is
cooled to /N, temperatures.
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Cryopumps

e Cryopumps cannot be used at high pressures because the
adsorbent surface quickly becomes saturated. Thus they must be
operated with a backing pump, or even a vane pump +
turbomolecular system.

e In return, cryopumps offer extremely high pumping speeds, up
to 1500 L/s.

e This allows them to achieve the highest vacuum = 10" torr or
better if a colder cryogen is used.

¢ One disadvantage is that, even at high vacuum, the adsorbent
eventually becomes saturated and must be replaced from time to
time (which must be done out of vacuum).
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Vacuum Systems: Who cares?

e Why do we care about vacuum systems? Only because MS can’t
be done without them!
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