
Week 3: Mass Analyzers
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Last Time…

• Soft Ionization: 
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Mass Analyzer = the ♥ of the Mass Spectrometer

3

• The mass analyzer is what makes a mass spectrometer a mass 
spectrometer.

• There are three classes of analyzer (that I made up):

• Separating: Ions are separated in space according to their 
m/z and detected at different times or locations.

• Filtering: All ions except for a specific m/z are removed. 
Ions with particular m/z are detected one at a time.

e.g. Thomson, some sector, TOF

e.g. Aston, some sector, linear quadrupole, ion trap (sortof)

• Resonant: Mass to charge is determined by measuring the 
resonant oscilations of ions in electric/magnetic fields.

e.g. Ion trap (sortof), FT-ICR, obitrap



Properties of Mass Analyzers
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• The mass analyzer used will determine a number of properties 
of the mass spectrum:

• Resolution: Probably the most important feature related to 
the mass analyzer.

m

max

½ max 
(HM)

full width 
@ ½ max

• e.g. I have a peak at 500 m/z, intensity 100 cps. The width of 
the peak at 50 cps is .2 m/z: 

• pretty crappy



Other Properties of Mass Analyzers
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• The next most important feature (arguably) is mass accuracy:

measured m/z real m/z

• Modern instruments can usually achieve 5 ppm mass accuracy 
or less, which means:

• If  I measure a m/z of  1000, I can expect to get it right to within 
1000x(5x10-6) = .005 m/z 

• Or put another way, at 5 ppm mass accuracy, my m/z 
measurement of  1000 is actually 1000.000 ± 0.005

mass 
accuracy



Still More Properties of Mass Analyzers
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• Mass analyzers also determine or influence:

• What types of experiment you can do. MS/MS? 
What Type? MSn? Ion Mobility?

• Sensitivity. Not as important as ionization or 
detector.

• Mass Range. Quadrupoles limited to about 3,000 m/z. 
TOFs not limited (in theory – in practice around 
20,000 m/z)

• Linear Dynamic Range. Not as important as detector; 
may contribute to ‘m/z bias’ in spectrum.



Sectors: The First Mass Analyzers
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• Aston’s mass spectrometers incorporated ‘sector’ mass 
analyzers, so called because they are divided into electric and 
magnetic sectors. 



Sector Instrument, Step 1: Acceleration
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• In a sector instrument, the first step is to accelerate our ions 
using an electric field.

• The energy supplied by the electric field Eel is equal to the 
product of the basic electric charge (qe=1.6022x10-19), the number 
of charges z and the applied voltage U.

• If we assume that all of the energy is converted into kinetic:

rearrange for v:



Velocity Due to Electric Field: Example
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• Let’s suppose we’re accelerating the awesome peptide 
[DEREK+H]+ which would have a molar mass of 676.7 g/mol, with 
10kV.

• We need to know the mass of the molecule in kg, so: 

• Then we calculate the velocity:



Sector Instrument Step 2: Electric Sector
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• In modern instruments, the electric sector produces a radial 
electric field between two opposite charged plates.

• Particles entering the electric field feel a force Fe due to the 
electric field:

rearrange for re,
sub in U (see 
slide 8) :



Electric sector, con’t…
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• What this tells us is intuitively obvious: 
That the ‘orbit’ of a particular m/z is bigger 
for faster ions (high accelerating voltage 
U) and smaller when the electric field 
between the plates is large (high E).

• Another property is that ions with divergent paths, but the 
same kinetic energy will have a set of orbits that focus at a 
particular length le.



Sector Instruments Step 3: The Magnetic Sector
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• The electric sector can focus ions with different trajectories 
slightly different kinetic energies onto a single point. Substantial 
differences in kinetic energy (e.g. due to different m/z and same 
U) will push the ion well out of focus (or ‘crash’).

• Magnetic sectors focus ions based on their momentum, based on 
the Lorentz force:

• Ions with a particular Ek will adopt a circular orbit with radius 
rm when the Lorentz force is balanced by the centripetal force:

or



(One of) The Right Hand Rule(s)
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• The direction of the Lorentz force can be shown using the right 
hand rule



The Magnetic Sector, Con’t…
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• We know the accelerating voltage U, and the relation to kinetic 
energy (see slide 8), so…

• ‘Spatial focusing’ of two ions is shown below. Divergent ions 
with same kinetic energy are focused at the radius of the ideal 
path (in which the ion enters at 90˚ to the field)



Sector Instruments: Magnet Scans
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• Sectors can come in all shapes and sizes. One of the main 
differences is the order of the sectors, i.e. EB vs. BE.

• The most common type of instrument is probably EB and the 
most common type of scan uses E for energy dispersion with 
spatial focussing, followed by B for mass dispersion. B is scanned 
to bring successive m/z through the detector slit.



Sector Instruments: Properties
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• Ultimately, the resolution of sector instruments depends on the 
amount of focusing, but mostly on the slit widths: 

• Note that decreasing slit width also reduces signal intensity, so 
there’s a tradeoff

• With slow scanning and μm slits, modern double focusing 
sector instruments can achieve resolutions of 60,000 or more with 
<5 ppm mass accuracy.



Sector Instruments: Other Properties
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• Sector instruments are capable of (and actually singularly good 
at) MS/MS studies with Collisional Dissociation.

• This is because sector instruments are set up to accelerate ions 
to an extremely high velocities through the instrument. This 
makes single collision bond breaking possible.

• Modern sector instruments are sometimes equipped with linear 
quadrupoles or hexapoles, which can transmit a wider range of 
m/z for separation in the magnetic sector.



Linear Quadrupole Mass Analyzers
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• Quadrupoles are resonance mass filters. They consist of four 
parallel rods in a square configuration 



The Quadrupole Field

19

• The quadrupole field used in mass analyzers is a combination of 
a direct current (DC) and an alternating current (RF).

• Each m/z will have a range of DC and RF values in which it’s 
trajectory through the quadrupole is stable.

• In a typical quadrupole scan, the DC and RF voltages are 
ramped together at a particular ratio, which has the effect of 
letting one m/z through at a time:

+ve rods

-ve rods

V
increasing m/z 
tansmitted



What Ions Feel in a Quadrupole
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• Ions in a linear quadrupole mass analyzer are exposed to the 
following fields:

• As a result, they will move in the following way (these 
‘equations of motion’ are called the Paul equations):

Frequency of  RF



Stability in the Quadrupole
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• For an ion to have a stable trajectory, it’s x or y position must 
never exceed r0 (distance from the center to edge of rod).

• To determine if an ion is stable, we could integrate the Paul 
equations over the amount of time t that it takes to traverse the 
quadrupole (t=l/vz), however, direct integration of the Paul 
equations is difficult.

• Instead, we need to change the ‘space’ of our analysis so that 
we’re not dealing with time, but rather a number of oscillations. 



Stable vs. Unstable trajectories
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stable
too heavy

too light



The Mathieu Equations
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• This was worked out in 1866 by Walter Mathieu, who was 
working on propegating waves in drums.

• To change space (transform), we need to describe the time 
spent in the quadrupole in terms of number of oscillations by 
introducing a new term ξ:

and

• Incorporating ξ and rewriting the equations of motion:



The a terms and q terms
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• You may noticed that the a terms have something to do with the 
DC voltage U and the q terms have something to do with the RF 
voltage V.

• Notice that the direct current term is multiplied by 8 whereas 
the RF term is only multiplied by 4. This implies that the DC 
voltage has a greater influence on the ion flight path than the RF 
on a V/V basis.



Stability Regions
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• By integrating the Mathieu equation (see slide 22), we can 
determine which values of a and q lead to stable trajectories 
(i.e. both x and y < r0 for the length of the quadrupole)

• If make a plot of a vs. q, 
and shade in all of the 
regions that correspond to 
a stable trajectory, we get: 



Stability Regions Con’t
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• Note that the ion must be 
stable in the xz plane and the 
yz plane. Therefore, we are 
looking for regions where ax/-
ay and qx/-qy intersect.

• This gives 4 possible ‘stable 
regions’:



The Best Stability Region
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• So that we don’t have to use huge voltages, we want the 
stability region closest to 0,0.

• This region looks like a triangle that varies in size depending on 
the m/z in question:

• So to conduct a scan in which I allow progressively larger 
masses through, I have to ramp U and V together in a certain ratio 
which gives the slope on the above plot. 



Resolution in Quadrupoles
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• Resolution in a quadrupole is determined by how close we can 
get our line to the ‘tip’ of the triangular stability region

• Of course, ions with slightly different kinetic energies or initial 
paths might be lost if we’re too choosy, so high resolution comes 
at a cost to sensitivity.

This graph is 
wrong!!



Resolution in Quadrupoles Cont.
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• In practice, what this means is that quadrupoles tend to have 
‘unit’ resolution across their entire mass range:



RF-only Quadrupole Ion guides
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• Note that if you set the DC voltage to 0, a quadrupole will 
simply transmit any ion that passes through, providing some 
spatial focusing. 

• In theory, any ion can be transmitted, but in practice, the 
limitation is around 30,000 m/z at normal RF frequencies. Larger 
ions can be transmitted (and even mass analyzed) using low, 
frequency, high power RF (see Carol Robinson). 

• Ion guides can be used for collisional cooling, in which an ion 
with an initially high amplitude oscillation is damped by low 
energy collisions with neutral gas. 



Quadrupole Ion Traps
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• Quadrupole (Paul) ion traps consist of a ring electrode with end 
caps on the top and bottom.

• The result is a ‘3D quadrupolar field’ with a null in the dead 
center. In one plane, ions in the trap have a ‘figure 8’-like orbit.



Stability in a 3D Ion Trap
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• Stability of an orbit in the ion trap can be determined more or 
less in the same way that it is for linear quadrupoles (we won’t go 
through it again)

• However, this time our goal will be to overexcite ions with 
specific masses, ejecting them from the trap.

• To do this, we make the DC portion of the field 0, going ‘RF 
only’.

• We also need to reverse how we’ve been looking at our plot, 
noting that q is also a function of m/z. Higher m/z = lower q at the 
same voltage. Higher voltage = higher q for all ions!



Ion Traps as Mass Analyzers
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• OK, so imagine a set of ions in the trap at a particular RF voltage

• When we increase V, q increases for all ions, and the lighter 
ones fall outside the stability region.



Ion Traps as Mass Analyzers, Cont.
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• It turns out that for Paul ion traps, an ion is stable at or below 
qz=.908.

• This means we can easily calculate the voltage required to 
observe a particular mass, or, as below, the maximum observable 
singly charged mass on an instrument that can put 8000V RF on 
the end caps:



Calculating qz: Example
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• Let’s say we have a trap mass spectrometer with trap 
parameters r0=7 mm and z0=7.8 mm. We want to figure out qz for 
our favorite peptide ion [DEREK+H]+ = 676.7 g/mol. Our RF 
frequency is .76 MHz.

• First we have to establish the trap geometry parameters in m:

m2

• Also need to convert RF frequency in Hz into angular 
frequency:

rad•s-1



Calculating qz: Example Cont.
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• We also need the mass of the ion in kg = (see 
slide 9)

• And now we’re ready:

• In other words, the ion is trapped!



Resolution in an Ion Trap
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• In an ion trap, resolution is determined primarily by your scan 
speed, i.e. how quickly you decrease the RF.

• Another important consideration is space-charge effects: The 
‘cloud’ of ions at the center of the trap will repel itself and spread 
out over time. This hurts resolution since it introduces non m/z-
related variation in kinetic energy within the trap.

• The solution to the above problem 
is twofold: i) Don’t have too many 
ions in the trap. ii) Take away the 
extra kinetic energy by collisions 
with neutral bath gas (usually He).



Mass Analyzer = the ♥ of the Mass Spectrometer
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• The mass analyzer is what makes a mass spectrometer a mass 
spectrometer.


