
Week 10: Proteomics and Protein Function

Last Time...

Pawson Group: Cell Signaling and Cancer

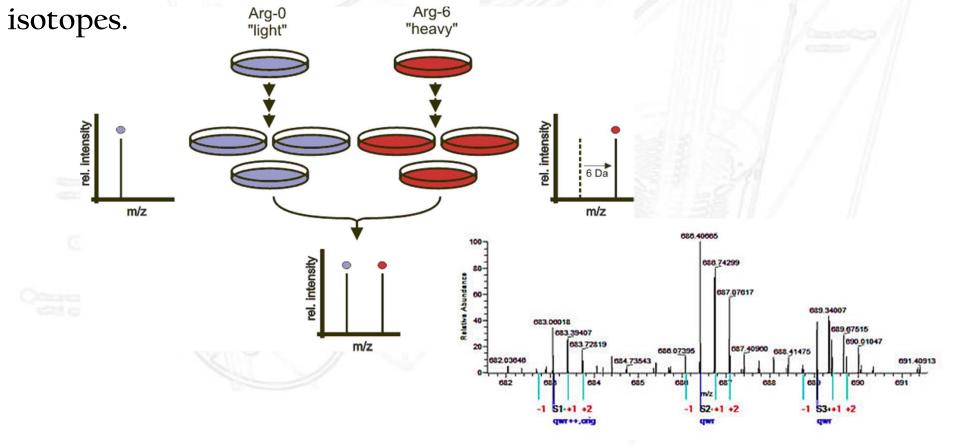
Cell-Specific Information Processing in Segregating Populations of Eph Receptor Ephrin–Expressing Cells

Claus Jørgensen,¹ Andrew Sherman,^{1,2} Ginny I. Chen,^{1,2} Adrian Pasculescu,¹ Alexei Poliakov,³ Marilyn Hsiung,¹ Brett Larsen,¹ David G. Wilkinson,³ Rune Linding,⁴* Tony Pawson^{1,2}*

• This paper is concerned with cell signaling, particularly 'clumping' and 'unclumping' signals initiated by cell-to-cell contact.

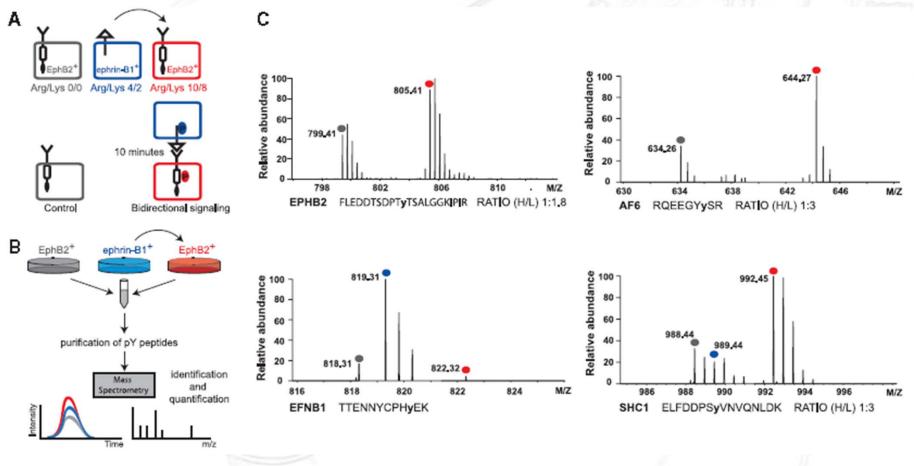
• These interactions are governed by 'Ephrin' transmembrane proteins that become phosphorylated on the inside of the cell after interacting with each other on the outside of the cell.

Ephrins

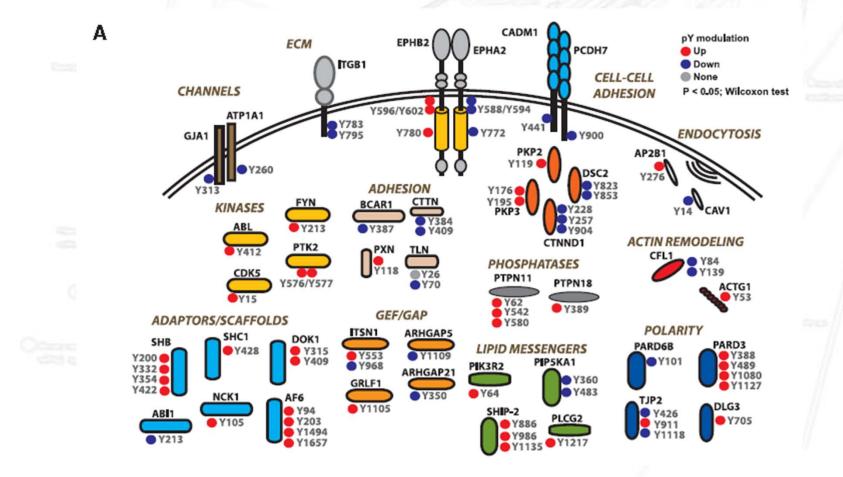

• Ephrins are receptor tyrosine kinases, meaning they are receptors that directly phosphorylate proteins in the cell when they are phosphorylated.

• Ephrins are expressed at very low level in adult cells. Their primary role is in development:

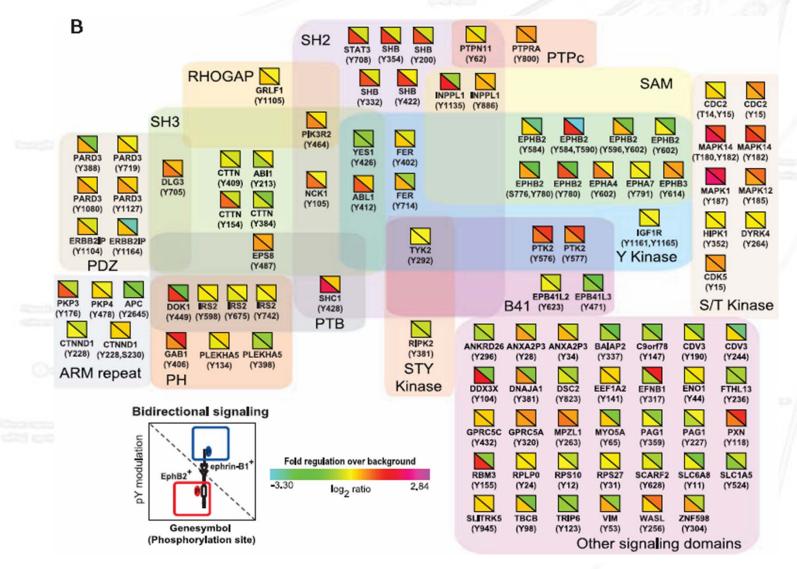
- Embryonic development (segmentation)
- Neuronal development (axon guidance)
- Cell migration (mainly during development)
- Angiogenesis (formation of blood vessels)
- Cancer (survival factor, help initiate metastisis?)


Quantitative Proteomics with Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC)

- The study is designed to map phosphorylation on all proteins regulated by ephrin-B1 \rightarrow ephrin-B2 interaction
- To do this, they use a quatitative proteomics technique called SILAC in which Arg and Lys residues are labeled with heavy

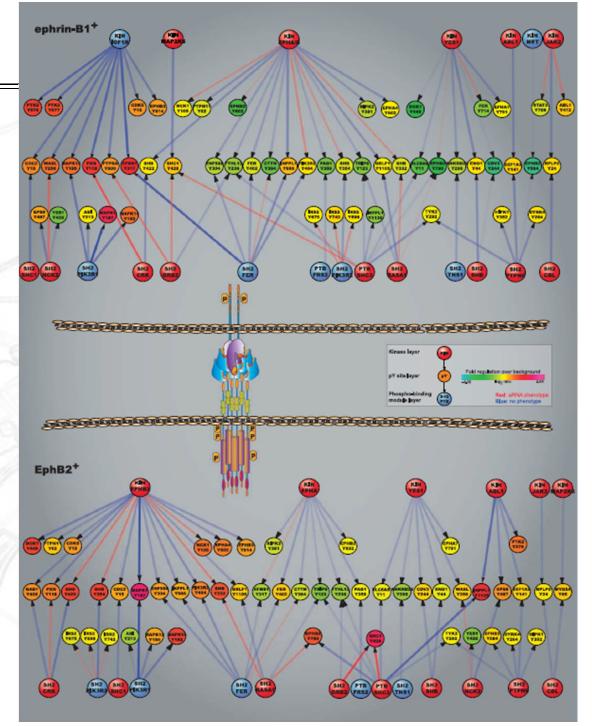

Ephrin Experiment Setup

• This is the experimental workflow for studying cell/cell interactions. MS = Orbitrap


Ephrin Signaling Results

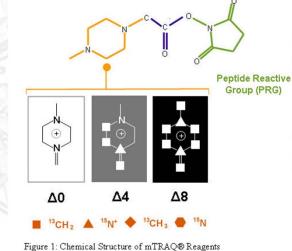
• In typical proteomics fashion, you end up with a huge map of proteins that are more-or less phosphorylated after cell/cell interations (Eph-B2+ cells):

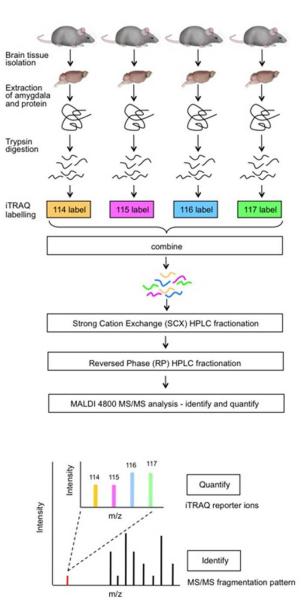
More Ephrin Signaling Results


• And an even broader map:

8

Computer Modelling

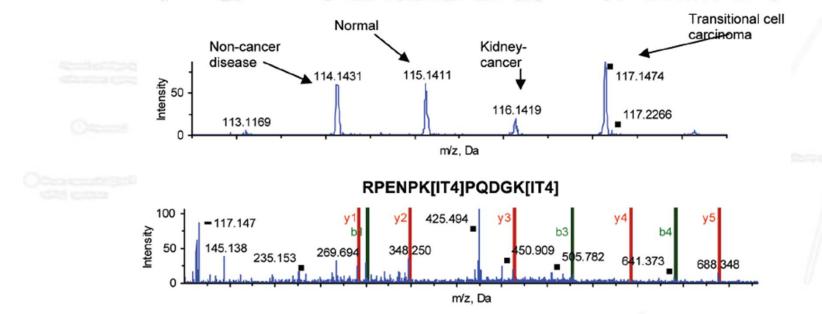

• To make a good guess at how phosphorylation affects activity, they used a computer model based on known function:



Example 2: The Siu Group

• Why stray far from home? A perfectly good example of large scale proteomics is right here in the Siu group, looking for biomarkers in various cancers...

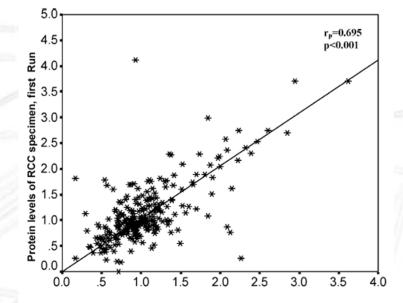
• The Siu group is linked to ABSciex and so they use their iTRAQ or mTRAQ labeling technology for quantitation.



Cancer Biomarker Dsicovery with iTRAQ

Differential Protein Expressions in Renal Cell Carcinoma: New Biomarker Discovery by Mass Spectrometry

K. W. Michael Siu,[†] Leroi V. DeSouza,[†] Andreas Scorilas,[‡] Alexander D. Romaschin,^{§,||} R. John Honey,[⊥] Robert Stewart,[⊥] Kenneth Pace,[⊥] Youssef Youssef,[§] Tsz-fung F. Chow,[§] and George M. Yousef^{*,§,||}


• Here's a quick example of iTRAQ use to discover biomarkers for renal cell carcinoma

Renal Cancer Cont.

• One of the challenges of quatitative proteomics is significant run-to-run fluctuations in protein 'intensity':

Protein	Swiss Prot ID	Craven ²²	Perego ²³	Sarto ¹⁸	Shi ⁵
60 kDa heat shock protein	P10809	<u> </u>	İ		
60S acidic ribosomal protein P2	P05387				
78 kDa glucose-regulated protein	P11021				
Albumin	P02768				
Alpha Crystallin B chain	P02511				
Alpha enolase	P06733				
Aminoacylase	Q03154				
ATP synthase D chain	P30049				
Calreticulin	P27797				
Cathepsin B	P07858				
Cathepsin D	P07339				
Elongation factor 1-beta	P24534				
Elongation factor 2	P13639				
Glutamate dehydrogenase	P00367				
Glutathione S transferase	P09211				
Heat shock 27 kDa protein	P04792				
Heat shock cognate 71 kDa protein	P11142				
Heterogeneous nuclear ribonucleoprotein A2/B1	P22626				
Lactate dehydrogenase A	P00338				
Lactate dehydrogenase B	P07195				
Peptidyl-prolyl cis-trans isomerase B	P23284				
Protein disulfide isomerase	P07237				
Septin 2	Q15019				
Tropomyosin alpha 3 chain	P06753				
Total Proteins identified:	243	34	28	27	23

Protein levels of RCC specimen, second run

• Agreement with other studies, however... would anything agree?

Lots of Proteins

• Over 937 proteins were identified... a partial list of 'dysregulated' ones is shown here:

attents (Cart

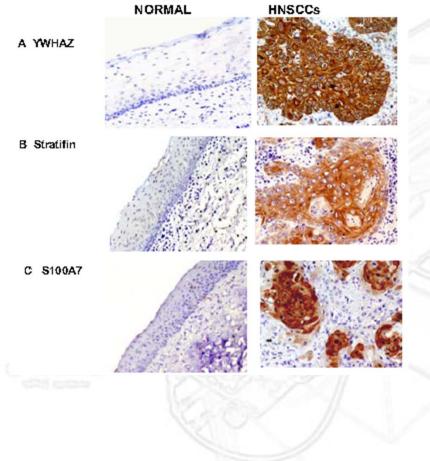
Ormet

Cara according 1

	ло.	protein name	gene symbol	Swise -Prot ID	fold change"	regulation ^a
	1	KIAA1865 protein	Cl4orf4	Q9H1B7	4.8624	UP
	2	tyrosine 3/tryptophan 5-moreoxygenase activation protein	YWHAH	Q04917	42912	UP
	3	CAPNS1 protein	CAPNS1	P04632	39777	UP
	4	Complement component 1 inhibitor	SERPING1	Q96FE0	3,66505	UP
	5	UDP-glucose 6-dehydrogenase	UGDH	060701	3.3497	UP
_	6 7	L-lactate dehydrogenase A chain Nicotinamide N-methyltransferase	LDHA NNMT	P00338 P40261	3.32095 3.2572	UP UP
-	ė	Hypothetical protein DKFZp686H13163	GST01	072312	3.1252	ŰP
	ğ	Poly(RC)-binding protein 2, isoform b	PCBP2	Õ6PKG5	3,0866	ŬP
	10	ADP-nbosylation factor 3	ARFS	P61204	3.0753	UP
	11	Calnexin precursor	CANX	P27824	2.8414	UP
	12	3'(2'),5'-bisphosphate nucleotidase 1	BPNTI	095861	2.7755	UP
	13 14	Hypothetical protein DKFZp547J2313	FABP7	Q9H047 P21964	2.7722	UP UP
	15	Catechol O-methyltransferase, membrane-bound form Glyceraldehyde-3-phosphate dehydrogenase, testis-specific	COMT GAPDHS	014556	2.7512 2.6716	UP
	16	Hypothetical protein	ANXA4	O6P452	2,6156	ŰP
	17	Hypothetical protein DKHZp686I04222	SERPINB6	Q6P452 Q7Z2Y7	2.5934	UP
	18	Echinoderm microtubule associated protein-like 4	EML4	Q9HC35	2.575	UP
	19	vimentin-human	VIM	P08670	2.5615	UP
	20	Cytoplasmic dynein intermediate chain 2C	DYNC112 CAPNS1	Q7Z4X1 P04632	2.5234 2.5198	UP UP
	21 22	Calpain small subunit 1 Glutathione S-transferase	GSTN2	P09210	2.49785	UP
	23	Alpha Crystallin ,0	CRYAB	P02511	2,48945	ŬP
	24	ALDOC protein	ALDOC	Q6POL5	2.4321	UP
	25	Rab GDP dissociation inhibitor alpha	GDI1	P31150	2.4198	UP
	26	PRKAR2A protein	PRKAR2A	Q9BUB1	2.4146	UP
	27 28	Chloride intracellular channel protein 1 Pre-B-cell colony enhancing factor 1, isoform b	CLIC1 PBEF1	000299 Q8WW95	2.4112 2.4046	UP UP
	29	Annexin A5	ANXA5	P08758	2.3679	UP
	30		GAPDH	P04406	2.3475	ŬP
	31	glyceraldehyde-3-phosphate dehydrogenase Endothelial cell growth factor 1 (platelet-derived)	ECGF1	P19971	1.834	UP
	32	Major wault protein	MVP	Q14764	1.6983	UP
	33	Adipose differentiation-related protein	ADFP	Q99541	1.6629	UP
	34 35	60 kDa heat shock protein	HSPD1 ATP5D	P10809 P30049	0.4896 0.4879	DOWN DOWN
	36	ATP synthase delta chain Coronín 1A	COROIA	P31146	0.4878	DOWN
	37	GCSH protein	GCSH	Q6IAT2	0.4873	DOWN
	38	TRGLN protein	TAGLN	Q6F152	0.4862	DOWN
	39	Ksp-cadherin	CDH16	Q6UW93	0.4818	DOWN
	40 41	splicing factor, arginine/serine-rich 2	SFRS2IP	Q99590 Q43670	0.4802	DOWN DOWN
	42	Zinc finger protein 207 405 ribosomal protein S17	ZNF207 RPS17	P08708	0.4726 0.4702	DOWN
	43	Secreted cement gland protein XAG-2 homologue	AGR2	095994	0.46395	DOWN
	44	Thymosin beta-4	TM284X	P62328	0.4631	DOWN
	45	CKB protein	CIGB	Q6FG40	0.4589	DOWN
	46 47	Calmodulin United and a Statistics FUI40004	CALMI	Q13942	0.4562	DOWN DOWN
	48	Hypothetical protein FLJ46684 Elongation factor Tu	C9on58 TUFM	Q6ZR40 P49411	0.4479 0.4476	DOWN
	49	Tumor protein p53 inclucible protein 3	TP53\11\3	O9BWB8	0.4383	DOWN
	ົ້	Calmodulin	CALMI	P62158	0.4245	DOWN
	51	Hypothetical protein DKFZp586K2222	TPM1	Q9¥427	0.4187	DOWN
	52	creatine kinase-B	CKB	P12277	0.4162	DOWN
	53	ATP synthase beta chain Hencedebe beta	ATP5B	P06576	0.41455	DOWN
	54 55	Hemoglobin beta Histone H2A	HBB HIST3H2A	Q6R7N2 Q7L7L0	0.4127 0.4112	DOWN DOWN
	56	AP endonuclease 1	APEX1	P2 7695	0.4085	DOWN
	57	Acyl-CoA dehydrogenase, medium-chain specific	ACADM	P11310	0.3938	DOWN
	58	Nonhistone chromosomal protein HlviG-17	HMGN2	P05204	0.39295	DOWN
	59	HESI protein	C21orf33	P30042	0.3925	DOWN
	60 61	Bukaryotic translation initiation factor 3 subunit 3 Calreticulin	EIF3H CALB2	O15372 O96BK4	0.3894 0.3772	DOWN DOWN
	62	Caredouin Programmed cell death protein 5	PDCD5	014737	0.3623	DOWN
	ĕ	Chromosome 10 open reading frame 65	C10orf65	Q86XE5	03616	DOWN
	64	adenylate kinase 3 alpha	AK3	Q9UIJ7	0.3613	DOWN
	65	LOCI12817 protein	ClOorf65	Q96EV5	03554	DOWN
	66 67	Ubiquinol-cytochrome-c reductase complex core protein I	UQCRC1 PLS3	P31930	0.3531	DOWN
	68	Plastin 3 Membrane associated protein SLP-2	STOML2	Q86YI6 09UJZ1	0.3394 0.3341	DOWN DOWN
	ê	MHC class II antigen	HLA-DRB1	Q9MYD9	0.3294	DOWN
	70	Reticulocalbin 1 precursor	RCN1	Q15293	0.312	DOWN
	71	DNA-binding protein B	YBX1	P67809	0.31	DOWN
	72	Cytochrome c	CYCS	Q6NUR2	02901	DOWN
	73 74	NADH-ubiquinone oxidoreductase 13 kDa-A subunit Lucrus I.a. matrix	NDURS6	075380	02759	DOWN
	75	Lupus La proteín Pyruvate dehydrogenase El component beta subunít	SSB PDHB	PO5455 P11177	02709 02662	DOWN DOWN
	76	FERM, RhoGEF, and pleokstrin domain protein 1, isoform 1	FARP1	Q9Y4F1	02628	DOWN
	77	Mitochondrial aldehyde dehydrogenase 2	ALDH2	Q6IV71	02603	DOWN

Discovery and Verification of Head-and-neck Cancer Biomarkers by Differential Protein Expression Analysis Using iTRAQ Labeling, Multidimensional Liquid Chromatography, and Tandem Mass Spectrometry*

Ranju Ralhanद||, Leroi V. DeSouza‡§, Ajay Matta¶**, Satyendra Chandra Tripathi¶, Shaun Ghanny§‡‡, Siddartha Datta Gupta§§, Sudhir Bahadur¶¶, and K. W. Michael Siu‡§|||


• This is a similar study with a better representation of the data as a 'heat map'.

The Head and Neck Cancer Heat Map

Accession #	Protein name	G1	G2	C3	G4	G5	G6	G7	C8	C9	G10	N2	N3	N1	N4	N5
spt/P31947	Stratifin	3.6	2.48	1.73	2.23	2.09	3.44	3.15	2.05	1.93	1.04	0.84	0.52	0.82	0.86	1.06
trm Q86V33	YWHAZ	2.58	2.34	1.45	1.54	1.23	1.85	10.27	1.58	1.58	1.02	0.95	0.81	0.98	0.93	0.93
spt/P29034	S100A 2	4.1	3.48	1.85	1.5	3.58	1.95	32.17	4.8	2.34	2.27	1.37	1.28	0.95	1.35	1.88
sp1/P31151	S100A 7	2.35	2.33	3.04	2.9	3.78	2.65		2.82	1.71	1.44	0.69	1.01	0.81	1.08	1.26
spt(P06454	Prothymosin Alpha	2.72	3.63	2.85	2.37	1.43	1.05		1.25	1.79	1.29	0.88	1.53	1.04	1.16	1.66
trm(Q96)H1	Fascin	3.51	2.35		0.85	2.33	1.89	12.1		1.43	1.76	1.16		1.14	1.02	1.01
spt/P31949	Calgizzarin	2.38		2.35	2.75	2.13	1.83		2.37	2.5	2.23		1	1.59	1.3	1.19
sp11P36952	Maspin Precursor	2.03		1.76	1.76	1.02	2.2		1.98	1.98	0.94		1.09	0.86	1.09	0.88
spt/P13928	Annexin A8	1.3			1.58	1.6	1.33			1.71	1.53	0.83		1.84	1.18	1.12
splice NZT1	Calmodulin-like protein 5	1.61	1.19		1.72	0.76	1.54	1.77		1.17	0.98	0.92		0.88	0.58	1.04
gb[44C13869.1	Glutathione S Transferase P	1.99	1.68	1.23	1.1	1.73	1.71	0.92	1.38	1.73	1.13	1.08	0.97	0.59	1.01	0.92
sp1/P00338	LDH A	2.07	1.74	1.27	1.02	1.36	1.77	2.33	1.56	1.84	1.26	1.03	0.75	0.96	0.94	0.93
spt/P62937	PPIA	1.69	1.89	1.18	0.99	1.76	1.34	2.86	1.65	1.17	1.06	0.86	0.48	0.86	0.92	0.97
3p1 Q15691	APC-binding protein EB1	2.15	2.62	3.02	3.45	99.99	1.39		2.02	1.94	NQ	0.93	0.87	1.36	1.40 N	NO.
gb AAH16934	Superoxide dismutase [Mn]	2.38	1.81		1	0.81	7.96				0.91		0.01		0.81	1.13
trm(Q86Y16	L Plastin	1.78	1		0.88	1.36	1.68			1.25	1.52			80.0	0.68	1.04
sp1 P60709	Beta Actin	1.11	1.04	1.06	0.86	1.14	0.86	0.82	1.3	1.06	0.87	0.83	0.71	1.07	0.81	1.1
trm Q8 Z29	Tubulin beta2	12	0.91	1.02	0.88	1.18	1.13	0.02	1.05	1.2	1.02	0.99	0.88	1.18	1	•••
trm/Q8WU39	PAGAP	0.3	0.72	0.65	0.71	0.61	0.48	0.13	0.52	0.72	0.62	0.39	0.31	1.66	1.44	1.03
trm(Q71013	Histone H3	0.38		0.57	0.58	0.69	0.36		0.6	0.62	2.47		1.86	1.73	124	1.84
sp1 P62805	Histone H4	0.66	0.69	0.52	0.69		0.68	0.67	0.54	1.24		1.2	2.36	1.89	2.72	
sp1 P01009	Alpha 1 Anti-Trypsin Precursor	The second second	0.29	0.35	0.65	0.5	0.62	0.22	0.35	0.71	0.28	1	0.31	0.73	0.85	0.81
3p1/P51884	KSPG Lumican	0.51	0.65	0.7	0.71	0.51	0.53	0.65	0.65	0.6	0.93	2.03	1.84	0.68	1.02	0.1
trm(Q96RZ7	Mast cell tryptase beta III	0.51	0.76	0.7	0.76	0.64	0.54	0.62	0.65	0.7	0.83	1.36	1.84	0.93	0.92	0.75
trm (Q9 U E88	Histone H2B.1	0.58	0.6	0.61	0.87	0.62	0.58	1.9	0.48	0.43	1.09	2	1.3	1.45	1.38	1.79
sp1 P08670	Vimentin	0.26	0.4	0.62	0.61	0.55	0.33	0.38	0.45	0.43	0.73	0.91	0.77	1.03	0.55	0.78
spt/P32119	Peroxiredoxin 2	0.43	0.85	0.56	0.66	0.71	0.46	0.55	0.89	0.63	0.51	0.94	0.43	0.64	0.55	0.77
spt/P00915	Garbonic Anhydrase I	0.34	0.78	0.48	0.57	0.37	0.37	0.88	0.67	0.59	0.56	0.63	0.36	0.51	0.67	0.93
sp1[P30043	Flavin reductase	0.54	0.74	0.54	0.01	0.8	0.59	0.1	0.86		0.72	0.67	0.5	0.64	0.01	0.B
pirKRHUE	Gytokeratin 14	1.27	1.31	1.84	3.83	1.46	1.29	0.24	2.06	1.01	1.7	0.61	0.98	0.91	1.04	1.14
trm/Q86U86	Polybromo-1D	1.21	1.01	0.54		0.58	1.25	0.24	2.00	1.91	0.58	1.69	0.50	0.51	1.07	1.14
spt/P14618	PK M2	1.51	1.48	1.18	1.04	1.18	1.34	2.26	1.61	1.4	1.21	0.9	0.84	0.95	0.94	0.97
spt P04083	Annexin A1	0.96	1.63	1.2	2.36	1.4	1.68	0.63	1.24	0.91	1.52	0.86	0.94	1.05	127	1.4
gbjAAH16768.1	Nucleophosmin 1	1.37	1.00	1.69	1.46	1.4	1.8	0.00	1.19	1.15	1.36	0.00	0.84	1.19	1.48	0.94
sp11P04792	Hsp27	12	1.3	1.25	1.68	1.25	1.49	1.69	1.82	1.42	1.01	121	1.01	0.9	1.32	1.12
3p1/P04080	Cystatin B	1.04	0.75	0.58	0.77	0.76	1.49	0.67	0.76	0.78	0.52	0.95	0.37	0.3	0.83	0.72
	GRP 94	0.5	0.86	0.56	0.0	0.77	0.55	0.59	0.10	0.10	0.52	0.68	0.51	1.17	0.81	0.77
spt P14625	MARCKS	0.5	1.57	1.26	9999	0.77	1.09	5.47	1.3	0.8	0.73	1.19	1.1	0.98	0.81	0.8
9644459555	MARGAO	0.86	1.57	1.26	3939	0.54	1.09	0.47	1.3	9.06	0.04	1.19	1.1	0.98	9.54	0.8.
			≪0.4	<0.5	<0.67	<0.8		>125	>1.5	>2.0	>2.5					
			-10.A	-0.0	-0.0	10.0		2120	1.0	2.0	12.0					

Histological Proof

• Immunohistochemistry was used to stain cells for the first three overexpressed proteins on the list...

• But are these proteins specific to head and neck cancer? Or are they upregulated in other cancers?

Head and Neck Specific Biomarkers

• So lets do the same immunohistochemistry on other cancers:

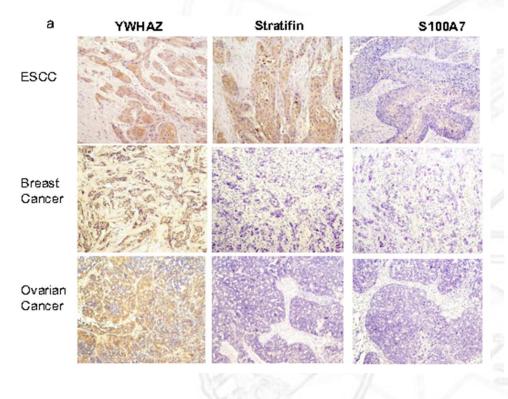


TABLE III Receiver operating characteristics from the IHC scores of a panel of the three best performing biomarkers, YWHAZ, stratifin, and S100-A7, individually and as a panel

Biomarkers	Sensitivity	Specificity	PPV	NPV	AUC
YWHAZ	1.00	0.71	0.71	1.00	0.90
Stratifin	0.92	0.60	0.62	0.91	0.85
S100-A7	0.96	0.71	0.71	0.96	0.90
YWHAZ, stratifin, S100-A7	0.92	0.87	0.83	0.94	0.91

TABLE IV

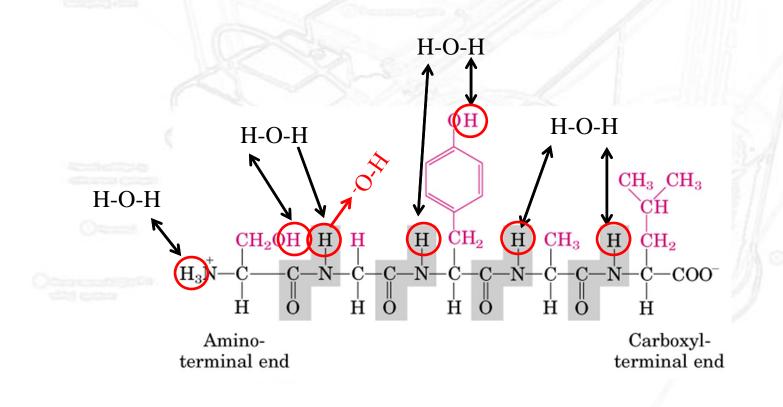
Comparison of receiver operating characteristics from the iTRAQ ratios of the panel of the three best performing biomarkers: nonpaired non-cancerous tissues give better sensitivity and specificity as a comparator than paired non-cancerous tissues

Comparison	Sensitivity	Specificity	PPV	NPV	AUC
Cancer <i>versus</i> paired normal	0.92	0.83	0.85	0.92	0.89
Cancer <i>versus</i> non-paired normal	0.96	0.96	0.98	0.90	0.97

And Now for Something Completely Different:

• So we've talked about finding proteins – *i.e.* which ones are there and to what extent...

• We might subsequently ask – How do these proteins do what they do. How do they function or mis-function?


• It turns out that integral to the question of how proteins function is the question of how proteins move, which is called conformational dynamics.

• Don't believe me? Try getting an enzyme from a hyperthermophile to work at room temperature!

• We might also be concerned with protein aggregation diseases, which are associated with conformational dynamics.

Hydrogen Deuterium Exchange (HDX)

- How do we learn about protein structure, folding and conformational dynamics using MS? HDX!!
- The idea behind HDX is simple: Amide protons on the peptide backbone are constantly exchanging with solvent...

HDX and Protein Structure

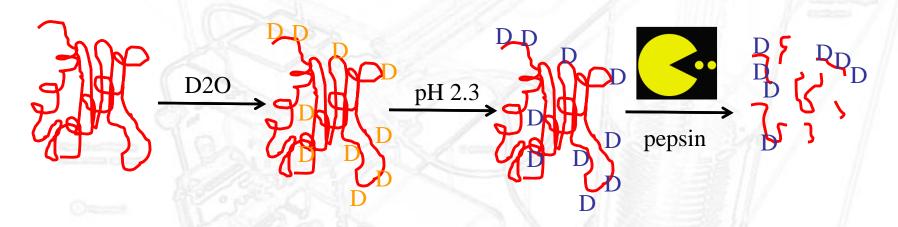
• So if we put the protein in D2O instead of water, exchange of backbone and side-chain protons for deuterium will make the protein heavier...which I can measure with MS...

• So what? No structural info there... but here's the kicker: In order for H/D exchange to occur we must first break any hydrogen bonds that might be present.

• What holds protein secondary structures (helices and betasheets) together? H-bonds!! That means, where there is a lot of secondary structure, HDX is going to be slow...

HDX Cont.

• Here's an example on a small protein called ubiquitin:


LOW-----HIGH

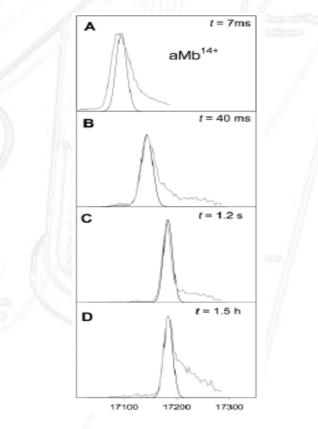
• Note that where there is secondary structure, there tends to be a low level of exchange. Where there are loops, there tends to be a higher level of exchange...

Spatially Resolved HDX

• But HDX would increase the mass on the whole protein. How do we know where the D is going?

• Time to break out the 'spatially resolved HDX by mass spec' workflow:

• We cannot simply label the protein and do CAD due to proton srambling. Structural info is lost!


Global HDX: EX1 and EX2 exchange

• Just for the sake of completeness, HDX generally occurs in one of 2 regimes, called EX1 and EX2.

EXI: Protein motion is slow relative to exchange. Motion occurs, ALL exchangeable sites opened up undergo exchange at once.

 \mathbf{F} \mathbf{f}

EX2: Protein motion is fast relative to exchange. Motion occurs, there is a probability of available sites exchanging.

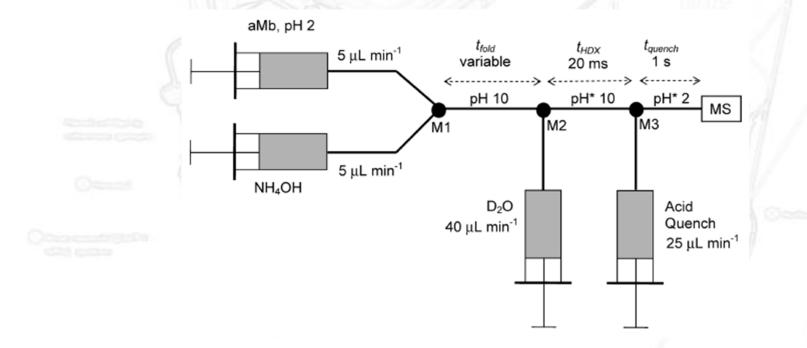
23

Protein Folding by HDX: Example 1

• When we're doing HDX, we have to study protein folding (because we can't study folding in acid). The ultimate objective is to have a time-resolved 'movie' of how the protein folds up.

• We're not there yet, but this paper comes pretty close:

Characterizing Short-Lived Protein Folding Intermediates by Top-Down Hydrogen Exchange Mass Spectrometry

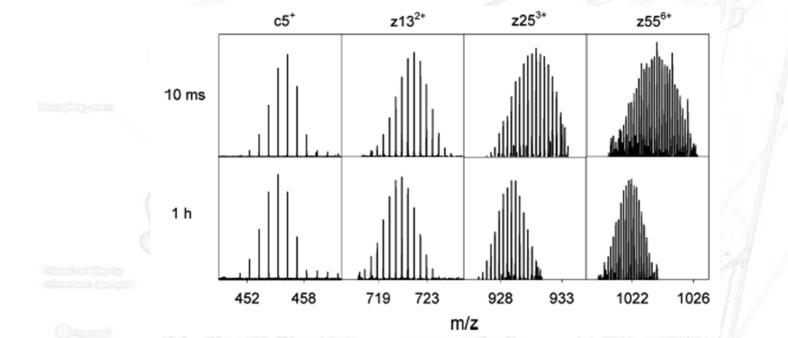

Jingxi Pan,† Jun Han,† Christoph H. Borchers,† and Lars Konermann*/†

Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 587, Canada, and University of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia, V8Z 7X8, Canada

Spatially Resolved Protein Folding

• The crux of this paper is that they don't use the proteolysis: Instead they use 'top-down' ECD of the whole protein...

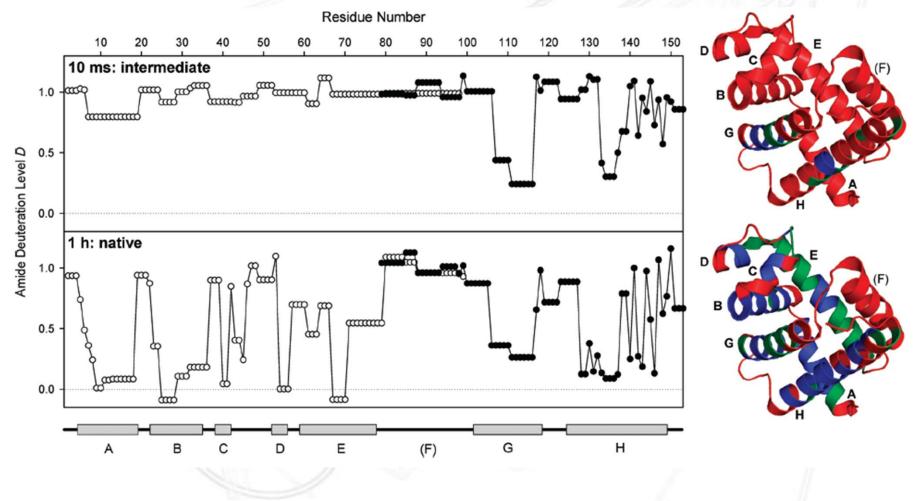
• They are also using a 'pulse labeling' approach in which you let the protein fold to a certain extent, then label, then use ECD to get your peptides:



Time-resolved Protein Folding Cont. 0°C 22 °C Intermediate Native • They also had to cool Intermediate down their aparatus to 10 ms Native get the folding within their available timewindow. 100 ms 1 s 1 h 1005 1001 1009 1013 1017 1000 1004 1008 1012 1016 m/z m/z

26

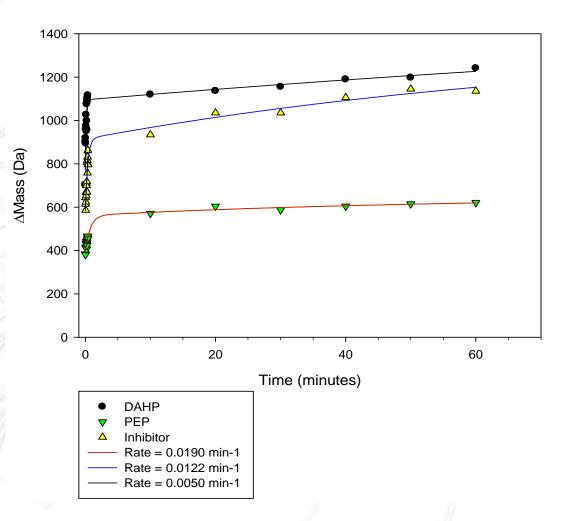
Protein Folding HDX Time-resolved...


• Here are some of the D-labeled peptides that they are getting from their ECD

• The resolution is so good here because they're doing this on an FT-ICR

The Bottom Line

• The 'bottom line' results from this paper are as follows:

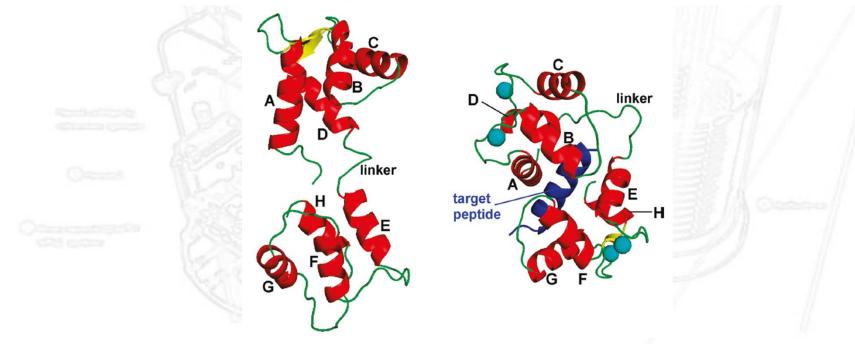


Example 2: Ligand Binding

• Many proteins function through binding of small molecules. This binding, and in some cases the binding surface can be studied by HDX-MS.

• This shows a substantial difference in global dynamics when the protein binds: It's natural substrate, an inhibitor.

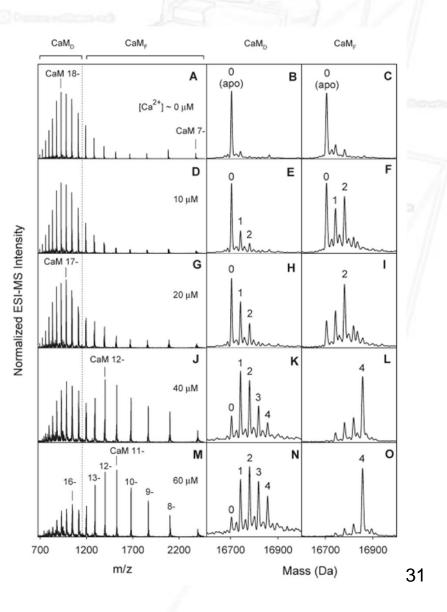
DAHP Synthase H/D Exchange Profile



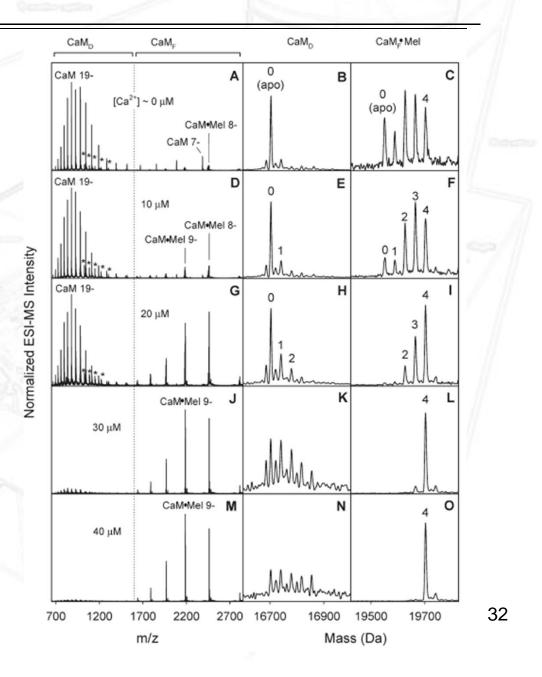
Calcium Binding to Calmodulin

• Here's a neat example of Calcium binding to Calmodulin in the pressence and absence of a target peptide:

Calcium-Induced Structural Transitions of the Calmodulin–Melittin System Studied by Electrospray Mass Spectrometry: Conformational Subpopulations and Metal-Unsaturated Intermediates[†]

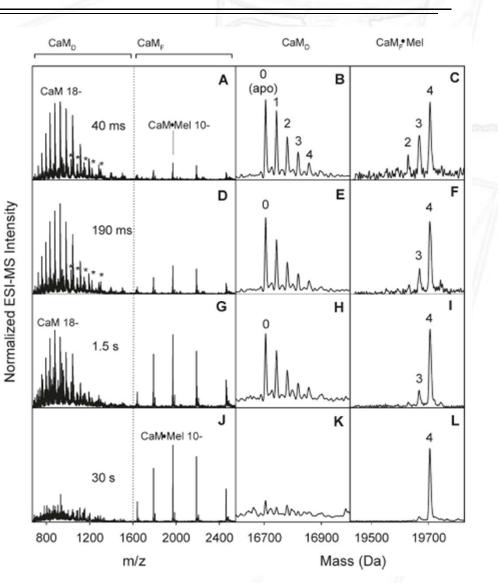

Jingxi Pan and Lars Konermann*

Head and Neck Specific Biomarkers


- Calcium binding in the absence of target peptide:
- CaM_D is denatured
- CaM_F is folded

• Calcium induces folding

More Calcium Binding


- Calcium binding in the presence of target protein
- Calmodulin showing higher affinity for calcium...
- Denatured Cam doesn't bind calcium or the target peptide...

Calcium Binding and Folding Kinetics

• Kinetic folding of Calmodulin in the presence of Ca²⁺ and target peptide...

• Allows us to watch binding and folding at the same time, which is pretty cool...

33