Metabolic Pathways and Energy Metabolism

Last Week...

Energy Metabolism

- The first thing a living organism has got to be able to do is

harness energy from the environment

- Plants do it by absorbing sunlight
- We do it by eating food

- I suppose this explains the focus of every biochemistry textbook on the processes of energy metabolism:

1) Glycolysis

- 2) The citiric acid cycle
- 3) Oxidative Phosphorylation

Sugar to Energy Overview

- Glucose is the most direct input into the energetics metabolic pathway

- As evidenced by the behavior of a typical 7 year old after he/she has a slushy.

- The first step is glycolysis, in which we directly break the sugar up.

- The overall reaction

We start with:

 α -D-Glucose

We end up with:

2 Pyruvate

2 (Oxidized) NAD⁺ o

The Whole Shebang!

- The whole enchilada!
- El toto!
- The long and the short of it!

Feeder Pathways: It Ain't Always Glucose!

Gluocose isn't going to hydrolyze itself! We need to activate it

- Also prevents glucose from leaking out of the cell, promotes glucose uptake

- The enzyme? Hexokinase:

- The reaction is Mg²⁺ dependent

- Now we need to isomerize the five membered pyranose ring to a four membered furanose ring

Glucose

l,6-bisphosphate (FBP

- How much glycolysis we gonna have?

Glucose Gl

н но

 $^{1}_{CH_{2}} - OPO_{3}^{2-}$

- As the first irreversible step in glycolysis, PFK-1 is tightly controlled.

- Allosterically inhibited by citrate, glucose 1,6bisphosphate and ATP (two active sites)!

- Glucagon \uparrow PFK-1 Expression \downarrow

- Allosteric activation: AMP (low energy)

- Finally, we bust up the ring for good!!

- Aldolase works through a complex, multistep mechanism involving... two Schiff Bases!

- Needs for there to be a carbonyl on C_2 and an alcohol on C_4 so that the Schiff base can do it's business!

- GHAP \rightarrow GAP with Triose Phosphate Isomerase (TIM). Diffusion controlled!

Enediol (or enendiolate) intermediate

 $_{95}^{\mathrm{His}}$

His

95

- Basically His and Glu playing with a couple of protons

Glycolysis Step 6 Glucose - We now have a conveniently placed carbonyl carbon... guess what we're going to do next... Fructose-1,6-bisphosphate (FBP Glyceraldehyde-3-GAP phosphate dehydrogenase NAD+ DHAP DHAP Thiohemiacetal 1,3-BPC 1.3-BPG intermediate NAD+ NADH 9 H₂O ← PEF Acyl thioester Enzyme-substrate intermediate complex - We get our first reduced NADH GAP $NAD^+ + P_i$ NAD! (NADH) NAD+ NAD+ Quite Unstable! -OH QH HO 0 OPO2-Is going to His R move on 1,3-Bisphospho-ЮH glycerate (1,3-BPG)

- We've got our high energy phopshoester linkage, now we can use it to make ATP!

- We need to activate the phosphate group on 3-phosphoglcerate by putting it near some 'mobile' electrons

- In case the carbonyl wasn't enough, we're going to add a Carbon-Carbon double bond adjacent to the phosphate:

Overall $\Delta G^{\circ} = -31.4 \text{ kJ} \cdot \text{mol}^{-1}$

Glycolysis: The end?... Of Course Not!

- Well, of we need to, we can oxidize NADH back to NAD⁺ by reducing pyruvate to lactate

Lactate dehydrogenase (Homolactic Fermentation)

Alcoholic Fermentation

Resonance-stabilized carbanion

Summing up Glycolysis

Free energy change with conc.

Standard free energy change ————		
TABLE 14-2 Free-Energy Changes of Glycolytic Reactions in Erythrocytes		
Glycolytic reaction step	$\Delta G'^{\circ}$ (kJ/mol)	ΔG (kJ/mol)
(1) Glucose + ATP \longrightarrow glucose 6-phosphate + ADP	-16.7	-33.4
2 Glucose 6-phosphate fructose 6-phosphate	1.7	0 to 25
(3) Fructose 6-phosphate + ATP \longrightarrow fructose 1,6-bisphosphate + ADP	-14.2	-22.2
④ Fructose 1,6-bisphosphate ⇒ dihydroxyacetone phosphate +		
glyceraldehyde 3-phosphate	23.8	0 to -6
(5) Dihydroxyacetone phosphate 🛁 glyceraldehyde 3-phosphate	7.5	0 to 4
(6) Glyceraldehyde 3-phosphate + P_i + NAD ⁺ \implies 1,3-bisphosphoglycerate +		
NADH + H^+	6.3	-2 to 2
7 1,3-Bisphosphoglycerate + ADP ⇒ 3-phosphoglycerate + ATP	-18.8	0 to 2
(8) 3-Phosphoglycerate 2-phosphoglycerate	4.4	0 to 0.8
(9) 2-Phosphoglycerate \implies phosphoenolpyruvate + H_2O	7.5	0 to 3.3
(1) Phosphoenolpyruvate + ADP \longrightarrow pyruvate + ATP	-31.4	-16.7

Note: $\Delta G'^{\circ}$ is the standard free-energy change, as defined in Chapter 13 (p. 491). ΔG is the free-energy change calculated from the actual concentrations of glycolytic intermediates present under physiological conditions in erythrocytes, at pH 7. The glycolytic reactions bypassed in gluconeogenesis are shown in red. Biochemical equations are not necessarily balanced for H or charge (p. 506).

Gluconeogenesis

- Alternative pathway for last step of glycolysis

Gluconeogenesis

- Bypassing step 3...

Fructose 1,6-bisphosphate + H2O \rightarrow Fructose 6-phosphate + Pi

 $\Delta G'^{\circ} = -16.3 \text{ kJ mol}{-1}$

- Mediated by Fructose 1,6bisphosphatase

Linearized Michaelis-Menten Kinetics

Overall:

2 pyruvate + 4 ATP + 2 GTP + 2 NADPH + 2H⁺ + 4 H₂O \rightarrow \longrightarrow Glucose + 4 ADP + 2 GDP + 6 P_i + 2NAD⁺ $\Delta G^{\circ} = -16 \text{ kJ mol}^{-1}$

- Gluconeogenesis happens mostly in the Liver when there's lots of ATP around.

- Excess sugar is stored as glycogen

Some New Playas!

Flavin Adenine Dinucleotide

OHOH

Step 1: Making Citrate

Citrate is made from Acetyl
CoA and Oxaloacetate

- Oxaoloacetate feeds in from the 'end' of the cycle

Step 2: Making iso-Citrate

- This sets sets up reduction of NAD⁺
- Uses a *catalytic* Iron / Sulphur cluster (4Fe-4S)

(2R,3S)-Isocitrate

Step 3: Making α-Ketoglutarate

- Uses NAD⁺ to oxidize isocitrate

- Detailed mechanism unknown

- Our second oxidative decarboxylation!

Step 4: Making Succinyl CoA

Step 5: Releasing Succinate

0 $CH_2 - COO^2$ COO⁻ His GDP + P; GTP CoA-SH CH₂ CH₂ Succinyl-CoA synthetase S-CoA C—S-CoA CH_2 succinyl-CoA synthetase COO⁻ Succinate (1)Succinyl-CoA CoA-SH $\Delta G'^{\circ} = -2.9 \text{ kJ/mol}$ CH₂ ĊH₂ - Transfer of high energy thioester to succinyl His phosphate high energy phosphoester 0 `O-(P) 2

- Mammals make GTP, plants make ATP

- GTP can be converted to ATP by nucleotide diphosphate kinase

Step 6: Oxidation of Succinate to Fumarate

- We've done about all the oxidative decarboxylation we can handle. Time to start moving back towards oxaloacetate

 $\Delta G'^{\circ} = 0 \text{ kJ/mol}$

- This step requires a strong oxidant

- This reaction is run in reverse for oxidative phosphorylation; FAD is covalently linked to the enzyme

Step 7: Hydration of Fumarate to Malate

Step 8: Oxidation of Malate to Oxaloacetate

 $\Delta G'^{\circ}$ = 29.7 kJ/mol

 Detailed mechanism unknown, though it must involve a hydride transfer to NAD⁺ in a manner similar to the other dehydrogenases.

- This reaction is highly endergonic

Energetics of the Citric Acid cycle

Reaction	∆G°'	est. ∆G	K _{eq}
		heart, liver	
1 (citrate synthase)	-31.4	-53.9	3.2 x 10 ⁵
2 (aconitase)	+6.7	+0.8	0.0067
3 (isocitrate dehydrogenase)	-8.4	-17.5	29.7
4 (α ketoglutarate dehydrogenase)	-30	-43.9	1.8 x 10 ⁵
5 (succinyl CoA synthetase)	-3.3	~0	3.8
6 (succinate dehydrogenase)	+0.4	~0	0.85
7 (fumarase)	-3.8	~0	4.6
8 (malate dehydrogenase)	+29.7	~0	6.2 x 10 ⁻⁶

- Note how many ΔG in vivo are close to zero. This should give an idea of the concentrations of intermediates

Regulation of Citric Acid cycle

- The citric acid cycle is both catabolic and anabolic

- Intermediates can feed in and out to keep their concentrations constant

Linearized Michaelis-Menten Kinetics

Linearized Michaelis-Menten Kinetics