Enzyme Dynamics and Function
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[Last Week...

- Last week was all about enzyme kinetics and regulation.
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Review of Macroscopic Steady State Parameters

- Ky The equilibrium constant between free enzyme [E]+[S]
and substrate and all enzyme complexes i

2 [EC],

=1

- The substrate concentration at which the initial reaction velocity V
1Isaty2 VvV

2K, 2

ax [S]: KM — :VmaxKM _Vmax

- A Measure of the ‘/ooseness of binding’ between E and S
Rates associated with
breakup of the complex/7

— k—l T kcat

Ky

Big Ky, = loose binding Intrinsic rate of 7
complex formation

Small Ky, = tight binding Ky



Review of Macroscopic Steady State Parameters

- k.- A function of all tirst order rate constants between ES and P.
Cannot be greater than any of the ‘forward’ microscopic rates.

ie it k.. =5 s notorward microscopic rate can be <5 s’

- k., is sometimes called the ‘turnover number’ because is gives the
maximum number of ‘turnovers’ per active site, per unit time.

TABLE 6-7 Turnover Numbers, k

ar Of Some Enzymes

Enzyme Substrate k.. (6™
Catalase H,0, 40,000,000
Carbonic anhydrase HCO3Z 400,000
Acetylcholinesterase Acetylcholine 14,000
[-Lactamase Benzylpenicillin 2,000
Fumarase Fumarate 800
RecA protein (an ATPase) ATP 0.4




Enzyme Efficiencies

- Catalytic efficiency is often given as:  k

- So, an efficient enzyme will have a high k

(tight substrate binder)

cat

cat

How fast?

(bigger - better)

M *—— How loose?

(smaller =

better)

(fast) and a low K,

Enzyme Substrate Ky (M) k575 booee/ K (M5 571
Acetylcholinesterase Acetylcholine 0.5 % 10~ 1.4 X 10° 1.5 X 10
Carbonic anhydrase CO, 1.2 % 102 1.0 x 10° 8.3 x 10/
HCO, 26 %104 40 x 10° 1.5 % 107
Catalase H,0, 15 % 107 1.0 x 107 4.0 x 108
Chymotrypsin N-Acetylglycine ethyl ester 4.4 x 107 545107 1.2 x 107
N-Acetylvaline ethyl ester 8.8 X 107° L %10 1.9
N-Acetyltyrosine ethyl ester 6.6 X 1074 1.9 X 10° 2.9 X 10°
Fumarase Fumarate 50 % 107" 8.0 x 107 1.6 x 10
Malate 2.5 x 107 9.0 x 10° 3.6 x 10
Superoxide dismutase Superoxide ion (O, * ) 36 x 1 1.0 X 10° 2.8 x 10°
Urease Urea 2.5 % 1072 1.0 x 10 40 X 10°




Errata! Uncompetitive Inhibition vs. Mixed Inhibition

- Mixed: - Pure Uncompetitive:
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Suicide (Irreversable) Inhibition o
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- Omeprazole: Best drug ever! i Lo
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- Stuck!

OCH,4



Enzyme Control by pH

- All enzymes have a pH optimum which is usually associated
with the ionization state of a critical (usually catalytic) residue
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Pepsin Glucose 6-phosphatase
(a) (b)
Catalytic Residue: His (2° amine)

Catalytic Residue: Aspartate



pH and Chymotrypsin
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Catalytic Residue: Serine... .2 Conformational changes
pKa Ser - -13! increase Ky,

- Mechanism is reliant on

SPPETINY
Histidine! http://www.bio.mtu.edu/campbell/401lec16ap2.html
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Enzymatic Control by Oligomerization

- Protease Activity of Lon (a multimeric ATP dependent protease)
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Biochemistry 2001, 40, 9317-9323



http://pubs.acs.org/cgi-bin/article.cgi/bichaw/2001/40/i31/pdf/bi0102508.pdf

Enzyme Dynamics and Function Intro

- When you get a crystal structure of a protein, it looks like this:

- It was originally thought that we
could just figure out where the
small molecules will bind, in what
orientation and we’ve have a good
idea of how the enzyme works. And
sometimes this works!

- Because proteins have to MOVE to carry out their function!



Why Study Motions?

- Catalysis is inherently dynamic... if nothing else, substrate binding
induces repositioning of catalytic residues

- It has been proposed that protein motions in the Michaelis
complex are directly linked to the catalytic reaction coodinate.

- Dynamics is crucial to ligand binding

- And allostery

- Proteins have therefore not only had
to evolve based on their structural
properties, but also on their available
dynamics modes.

DNA Polymerase

http://wishart.biology.ualberta.ca/moviemaker/gallery/index.html
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Motions and Time-scales

- Polypeptide chains are intrinsically
capable of motion — backbone phi/psi,

rotation of side chains...

- These motions occur over a wide range
of time-scales:

ps i us ms 5 ks

vibration,
libration
+—

side chain allostery
rotation 4 >
—

HIV Protease



Enzyme Dynamics

- Sounds good in theory, but how do we prove it? Can we find any
examples?

- How can we see these motions?

D
D »
g . .
D
Ground State (low energy, Excited state (high energy,
common) rare)

- Hydrogen/deuterium exchange: Put protein in D,O - the backbone
protons (NH from peptide bonded N) will exchange with solvent D.



Hydrogen/Deuturium Exchange

- This will make the protein heavier.

Mass Spectrometry!!

- Sites where exchange has occured (i.e. where the NH has exchanged
to ND) will become NMR silent!

Site specitic ‘exchange protfile’
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Back to Our Story...

- How do we prove that motion in enzymes is important?

- Take H/D exchange measurements in the presence and absence of
substrate! Right?
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Peptic Fragments
- Well, actually... no. The amount of H/D exchange (the therefore
the dynamics) appear to be the same!!



http://pubs.acs.org/cgi-bin/article.cgi/bichaw/2008/47/i24/pdf/bi800463q.pdf

Thermophiles

- So our idea that motion is critical to enzyme function is wrong... or
IS TIM

- Enter enzymes from Hyperthermophiles:

- These enzymes operate normally at 80°C+,
but hardly at all at room temp!

Acylphosphatase from __—

Sulfolobus solfataricus

- Why not? Are they properly folded? YES »
- Right pH? Right Oligomeric state? YES m

- Not enough thermal energy for catalytically required dynamics.



Why no ditference in H/D exchange?

And this guy:

Dorothee Kern

g
Lewis Kay
provided an answer:

‘We propose that the pre-existence of collective dynamics in enzymes before
catalysis is a common feature of biocatalysts and that proteins have evolved
under synergistic pressure between structure and dynamics’

Nature|Vol 438|3 November 2005



Dynamics are Same with and Without Substrate

Nat. Struct. Biol.|Vol 11|10 2004

Adenylate Kinase Nature|Vol 4383 November 2005
Thermophillic/Mesophillic
Enzyme Pair Cyclophillin A (prolyl isomerase)

Dynamics ‘hot spots’ are the same!



[ inearized Michaelis-Menten Kinetics




[ inearized Michaelis-Menten Kinetics
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