Enzyme Dynamics and Function

http://wishart.biology.ualberta.ca/moviemaker/gallery/index.html

Last Week...

- Last week was all about enzyme kinetics and regulation.

Leonor Michaelis

1875-1949

Maud Menten 1879-1960

Velocity

 K_{M}

[Substrate]

/alocity

[Substrate]

V/S

Sigmoidal

Velocity

Review of Macroscopic Steady State Parameters

- K_M : The equilibrium constant between free enzyme and substrate and *all* enzyme complexes

 $\frac{[E] + [S]}{\sum_{i=1}^{i} [EC]_i}$

- The substrate concentration at which the initial reaction velocity V is at $\frac{1}{2} V_{\text{max}}$ [S] = $K_M \longrightarrow V = \frac{V_{\text{max}}K_M}{2K_M} = \frac{V_{\text{max}}}{2}$

- A Measure of the '*looseness* of binding' between E and S

$$K_M = \frac{k_{-1} + k_{cat}}{k}$$

Small K_M = tight binding Big K_M = loose binding

Intrinsic rate of \checkmark n_1 complex formation

Review of Macroscopic Steady State Parameters

- k_{cat}: A function of all first order rate constants between ES and P.
 Cannot be greater than any of the 'forward' microscopic rates.

i.e. if $k_{cat} = 5 \text{ s}^{-1}$, no forward microscopic rate can be < 5 s⁻¹

 - k_{cat} is sometimes called the 'turnover number' because is gives the maximum number of 'turnovers' per active site, per unit time.

TABLE 6–7 Turnover Numbers, k_{cat} , of Some Enzymes

Enzyme	Substrate	$k_{\rm cat}~({\rm s}^{-1})$
Catalase	H_2O_2	40,000,000
Carbonic anhydrase	HCO ⁻ 3	400,000
Acetylcholinesterase	Acetylcholine	14,000
β -Lactamase	Benzylpenicillin	2,000
Fumarase	Fumarate	800
RecA protein (an ATPase)	ATP	0.4

Enzyme Efficiencies

- So, an efficient enzyme will have a high k_{cat} (fast) and a low K_M (tight substrate binder)

Enzyme	Substrate	$K_M(M)$	$k_{\rm cat}~({\rm s}^{-1})$	$k_{\rm cat}/K_M (M^{-1} \cdot { m s}^{-1})$
Acetylcholinesterase	Acetylcholine	$9.5 imes 10^{-5}$	$1.4 imes 10^4$	$1.5 imes 10^{8}$
Carbonic anhydrase	CO_2	$1.2 imes 10^{-2}$	$1.0 imes10^{6}$	$8.3 imes 10^7$
	HCO ₃	$2.6 imes10^{-2}$	$4.0 imes 10^5$	$1.5 imes 10^7$
Catalase	H_2O_2	$2.5 imes 10^{-2}$	$1.0 imes 10^7$	$4.0 imes 10^8$
Chymotrypsin	N-Acetylglycine ethyl ester	$4.4 imes 10^{-1}$	5.1×10^{-2}	$1.2 imes 10^{-1}$
	N-Acetylvaline ethyl ester	$8.8 imes10^{-2}$	$1.7 imes 10^{-1}$	1.9
	N-Acetyltyrosine ethyl ester	$6.6 imes10^{-4}$	$1.9 imes10^2$	$2.9 imes 10^5$
Fumarase	Fumarate	$5.0 imes 10^{-6}$	$8.0 imes 10^2$	1.6×10^{8}]
	Malate	$2.5 imes 10^{-5}$	$9.0 imes 10^2$	$3.6 imes 10^7$
Superoxide dismutase	Superoxide ion $(O_2 \cdot)$	$3.6 imes 10^{-4}$	$1.0 imes 10^{6}$	$2.8 imes10^9$
Urease	Urea	$2.5 imes 10^{-2}$	$1.0 imes 10^4$	4.0×10^{5}

Errata! Uncompetitive Inhibition vs. Mixed Inhibition

- Mixed:

- Pure Uncompetitive:

 K_M/V_{max} = unchanged!!

- All enzymes have a pH optimum which is usually associated with the ionization state of a critical (usually catalytic) residue

pH and Chymotrypsin

Catalytic Residue: Serine....?

pKa Ser = ~13!

- Mechanism is reliant on Histidine! Conformational changes increase K_M

http://www.bio.mtu.edu/campbell/401lec16ap2.html

Enzymatic Control by Oligomerization

- Protease Activity of Lon (a multimeric ATP dependent protease)

Oligometric form favored $(Mg^{2+}\uparrow)$

Monomeric form favored (Mg2+ \downarrow)

Biochemistry 2001, 40, 9317-9323

Enzyme Dynamics and Function Intro

- When you get a crystal structure of a protein, it looks like this:

- It was originally thought that we could just figure out where the small molecules will bind, in what orientation and we've have a good idea of how the enzyme works. And sometimes this works!

- But sometimes it doesn't! Why? ...WHY!!!...

- Because proteins have to MOVE to carry out their function!

Why Study Motions?

- Catalysis is inherently dynamic... if nothing else, substrate binding induces repositioning of catalytic residues

- It has been proposed that protein motions in the Michaelis complex are directly linked to the catalytic reaction coodinate.

- Dynamics is crucial to ligand binding

- And allostery

 Proteins have therefore not only had to evolve based on their structural properties, but also on their available dynamics modes.

DNA Polymerase

http://wishart.biology.ualberta.ca/moviemaker/gallery/index.html

Motions and Time-scales

 Polypeptide chains are intrinsically capable of motion – backbone phi/psi, rotation of side chains...

- These motions occur over a wide range of time-scales:

HIV Protease

- Sounds good in theory, but how do we prove it? Can we find any examples?

- How can we see these motions?

Ground State (low energy, common)

Excited state (high energy, rare)

- Hydrogen/deuterium exchange: Put protein in D_2O – the backbone protons (NH from peptide bonded N) will exchange with solvent D.

- This will make the protein heavier.

Mass Spectrometry!!

- Sites where exchange has occured (i.e. where the NH has exchanged to ND) will become NMR silent!

Site specific 'exchange profile'

- How do we prove that motion in enzymes is important?

- Take H/D exchange measurements in the presence and absence of substrate! Right?

- So our idea that motion is critical to enzyme function is wrong... or IS IT!!?

- Enter enzymes from Hyperthermophiles:

- These enzymes operate normally at 80°C+, but hardly at all at room temp!

- Not enough thermal energy for catalytically required dynamics.

Why no difference in H/D exchange?

In 2005, this lady:

Dorothee Kern

And this guy:

Lewis Kay

provided an answer:

'We propose that the pre-existence of collective dynamics in enzymes before catalysis is a common feature of biocatalysts and that proteins have evolved under synergistic pressure between structure and dynamics'

Nature|Vol 438|3 November 2005

Dynamics are Same with and Without Substrate

Nat. Struct. Biol. |Vol 11|10 2004

Adenylate Kinase Thermophillic/Mesophillic Enzyme Pair

Nature|Vol 438|3 November 2005

Cyclophillin A (prolyl isomerase) Dynamics 'hot spots' are the same!

Linearized Michaelis-Menten Kinetics

Linearized Michaelis-Menten Kinetics