Amino Acids to Peptides to Proteins
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[ast Time...

- We learned all about Peel!
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The amino Acids!

- There are 20 Amino Acids in all
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- Chemistry is conferred by the variable side chain on the a carbon
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- Some amino acids can be modified, which is very important for metabolism



Amino Acid Modifications

- Most ‘modifiable amino acid?

Lysine!!

Some common ‘post-translational
Modifications’

Acylation (think Acetyl-CoA, Lys, Ser)
Alkylation (methylation, Lys, Arg)
Biotinylation (Lys)

Glycosylation (Asn, Ser, Thr, Lys-OH)

Oxidation (Lys, Cys, Met) e
Phosphorylation (Ser, Tyr, Thr, Cys, ‘
His)

Sulfation (Tyr, Cys [disulphide])
Amidation (C-terminus)

Glycylation (C-terminus)



Acylation

- Acylation of Serine occurs during catalysis by Aydrolytic enzymes, e.g. peptidases and
lactamases

- Acylation of Lysine is important for regulation of gene expression, localization and
enzymatic acitivity
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http://scholarsportal.info/pdflinks/08080113221711552.pdf

Biotinylation

- Biotinylation is crucial for regulation of gene expression. It also plays a role in fatty
acid metabolism and gluconeogenesis.
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http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCV-3XBTG7G-9&_user=866177&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=866177&md5=ac226e6176d987e30cc3b3fa71d78622

Glycosylation

- This is the reaction that makes glycoproteins, not always Asn, also ‘o-linked’
glycosylation on Ser, Thr.

Trans-Golgi
Medial Golgi
Cis-Golgi
Endoplasmic Reticulum
Asn Asn Asn Asn Asn Asn Asn Asn
Dolichol phosphate ® Mannose
V¥ Glucose
B GIcNAc
(O Galactose
& Sialic acid

- Generally not directly relevant to metabolism, more to do with cell-cell recognition
and immunogenicity



Oxidation

- Oxidation of Methionine is mostly associated with oxidative stress and aging, both of

which influence metabolism
I N-domain Ca ATPase Inhlblte]_“

/domam

- Exerts influence by inactivation Caoc/ \oub
MN-domain

proteins, e.g. Calmodulin

M-damain

D P0

Helease of Inhibition Retentlon of Inhibition

Biochimica et Biophysica Acta 1703 (2005) 121-134

- Oxidation of Cystein can be a growth factor induced signal to support cell
proliferation via phosphorylation of Tyrosine. It does this by catalyzing the formation of

disulphide bonds...

H,0, H,0
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330~ gy 330|—__ SH 330 —_ S

S. H. Cho FEBS Letters 560 (2004)



http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B73DJ-4DDCT5T-1-K&_cdi=11472&_user=866177&_orig=search&_coverDate=01%2F17%2F2005&_sk=982969997&view=c&wchp=dGLzVzz-zSkWz&md5=4054aa775e7c463bf29a9b30cd4abd48&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T36-4BMT9MJ-5-7&_cdi=4938&_user=866177&_orig=search&_coverDate=02%2F27%2F2004&_sk=994399998&view=c&wchp=dGLbVlb-zSkzk&md5=f36d27c1a45b6bf0668f19f9dbb233da&ie=/sdarticle.pdf

Cysteine Oxidation Continued

- Here are the various oxidized states of Cysteine. All of these are reversible and some
are important for regulation...
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Phosphorylation

- Probably the most important metabolic Post Translational Modification (PTM)!!

- Huge role in signal transduction, mediating
enzyme activity, protein interactions

- Enzymes involved are Protein Kinases (stick
phosphoryl groups on) and Phosphatases (take
phosphate groups oft)
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NATURE CELL BIOLOGY VOL 4 MAY 2002

Phosphatase mechanism


http://www.nature.com/ncb/journal/v4/n5/pdf/ncb0502-e127.pdf

Phosphorylation — The Kinases

- The Mitogen Activated Protein (MAP) Kinases: Masters of signal transduction!!

- All of this is via Serine and Tyrosine Phosphorylation

Extracellular Stress, growth factor,
stimulus: Growth factor differentiation factor Stess
MKKK Raf-1, A-Raf, MEKK1-3, MEKK4, TAK1, ASK1,
B-Raf, Mos TpI -2 DLK MLK3
MEK1,
MKK MEK2 ?  MKK5 MKK4, MKK7 MKK3, MKK6
ERK1, ERKS, JNK1, JNK2, p38a, p38p,
MARK ERK2 ERK4 ERKS INK3 p38y, p383

| = | |

k -
Transcription P90, S6 kinase, Sos, \pFoc

factors and phospholipase A, c-Jun, ATF-2, Elk-1, p53, MAPKAP kinase, ATF-2,
other kinases: EGF receptor, EIk-1, Ets1, ﬂ DPC4, NFAT4 Elk-1, Chop, Max, MEF2C
Sapila, c-Myc, Tal, STATS

P !

Cellular Growth, Growth, differentiation, Cytokine production,
response: differentiation survival, apoptosis apoptosis
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STAT Proteins + Cancer: Pat Gunning (UTM) . af2
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Tony Pawson 1952 - 2013

- World leading researcher in signal
transduction @ UT

- Developed the not so tiny field of
phosphoproteomics

- Since then a number of world-leading researchers have
taken over...

= </ “ Sinai | Lunenfeld-Tanenbaum
s » ¢ Health | Research Institute

Anne Claude  Jim Woodget
Gingras



Ephrin Signaling

- Phosphorylation in response to cell/cell interaction
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The Peptide Bond

- Peptide bonds are formed in a condensation reaction that is catalyzed in the ribosome

Amino acid (1) H Amino acid (2) H

Dipeptide

- Two amino acids = dipeptide, three = tripeptide... theoretically it should go on like
this, but in general, we call anything over 5 just ‘peptide’ or ‘polypeptide’



Primary Structure — Amino Acid Sequence

- The amino acid sequences of peptides and proteins, the primary structure, is the basis
for everything that is interesting about them - structure, dynamics... everything

- It’s also one of the hardest things to get at:

008 ) 500 0000 080

S-Q-D-A-G-M-Q-Q-G-A-D-M-D-Q-V-S-A

Frederick Sanger (1918-1997)

Sequenced insulin using
limited Proteolysis and
paper chromatography!

GO0 90000008 000

Enzymatic
l hydrolysis
@® o ®
00“~O‘%~ Dipeptides




The Physiologial Role of Peptides

- Many peptides are hormones:

- Melanocyte Stimulating Hormone (MSH) i

The Neuropeptide
oxytocin

- Vasopressin; antidiuretic

- Oxytocin; brain (mood), uterine contraction, milk < L
production ¥ .

- Insulin; Sugar metabolism

- Thyroid stimulating hormone (TSH)-p;
General metabolic rate

NH2

- Many are also neuropeptides: j&
v <?
- Galanin; Neurotransmitter inhibition

- Somatostatin; Master hormone suppressor ﬁﬁ 7;[

(especially gastro-intestinal and growth)

- Cholecystokinin; mood, causes anxiety ,
Somatostatin



Peptide Poisons

- Pro Tx-1 (spider venom); 35 a.a. peptide, irreversibly opens ion gate channels (mostly
in insects)

- Muscarinic Toxin 3; brain toxin - motor control, memory

d e ~ f
- Conotoxins; Inhibit (

o
acetylcholine receptors in nerves (—{ » (\(J JJ (\’jJ N
' \/ VRt V¢

and muscles, sodium channels,
W "

potassium channels
PNAS September 27, 2005 vol. 102 no. 39 1376/=13772

- Many snake venoms are peptide poisons that interfere with specific enzymes,
such as:

- Phosphodiesterase; blood pressure

- Cholinesterase; loss of muscle control


http://www.pnas.org/content/102/39/13767.full.pdf+html

The Peptide Bond and Structure

- Very often, the biological activity of peptide is dependent on their having a specific
structure

- The peptide bond itself is planar (green squares), so the
region around the peptide bond is flat.

- This leaves two bonds of the ‘main chain’ that can rotate:

The N-C, bond = ¢ ‘phi’
The C,-CO bond = vy ‘psi’

Side group

Peptide
bond




Ramachandran Plots

- This means that in peptides (and proteins), there are only a relatively small range of

‘allowable’ ¢/ angles

. - The guy who figured this out
: systematically was:

l & « Gopalasamudram
3 ' Narayana lyer

Ramachandran
(1922-2001)

- Green = allowable
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The Trouble with Glycine

Glycine

180

90

y (deg)

=20

-180
-180 0 90 180




Secondary Structure

- By the 1940’s, it was clear that protein function had something to do with how the

polypeptide chain was folded up.

- Watson, Crick, Wilkins and Franklin had figured out the ‘double helix’ structure of

DNA

- Which brings us back to this guy:

- Linus Pauling 1901-1994

- - Trained in theoretical physics, at the
center of early X-ray crystallograhy

- Recognized the importance of the H-
bond in stabilizing protein structure
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Sneaky Slide About H-bonds

Donor Acceptor

R-IiIR

1.85-2.00 A

285-3.00A

12 <= E <= 38 kJ/mol



Helices

- In theory, there could be all kinds of helices in proteins

D=0
©
(‘%‘;’g n=5 n=4 n=3 n=2 n=-3

Irving Geis/Geis Archives Trust. Copyright Howard Hughes Medical Institute. Reproduced with perimssion.

- In practice, there’s pretty much just one — the right handed a-helix:

Irving Geis /Geis Archives Trust. Copyright Howard Hughes Medical Institute. Reproduced with perimssion.




o-helices in Real Life...

Amino terminus @ Carbon
O Hydrogen
@ Oxygen
@ Nitrogen
@R group

5.4
(3.6 resi

Carboxyl terminus

(a) (h)

- Salient Features:

*3.6 residues per turn, 0.15 nm per residue

«Each backbone carbonyl (O) (n) is hydrogen-bonded to backbone amide
(H) 4 residues away to the C-term (n+4)
*All side chains are on the outside



The ‘Other’ Helices

- Two other helices are possible; they are occasionally observed in nature:

The ‘stretched’ helix: 3, The ‘squished” helix: &
H-bonding i+3 H-bonding i+5

Rise of .2 nm/residue Rise of .115 nm/residue
3 residues/turn 5 residues/turn

Does occur in nature (rarely)



Amphipathic Helices

- For superstructural reasons, helices are often amphipathic, meaning that one side has
mainly hydrophobic residues while the other has mainly hydrophillic residues.




The 3-Pleated Sheet

- Shortly after the helix, the B-sheet was described:

(a) Antiparallel

75
\ 4

Irving Geis/Geis Archives Trust

Copyright Howard Hughes Medical Institute. Reproduce

@ v—c

d with permission

(b) Parallel

e U ® C o <
o ® ® < @
L U/ U/



B-Sheets are Twisted

- B-sheets are almost never flat — Anything more than 3 strands will have a significant
superstructural right-handed twist:

The SH3 domain

Carboxypeptidase A



Turns and/or Bends

- In between elements of Teal’ secondary structure are linker regions, which can be
essentially random (random coil) or specifically structured p-turns

- Carbonyl of amino acid 1 H-bonded to amide hydrogen of amino acid 4 (i+3)

- Type I: Carbonyl of a.a. 2 pointed ‘in’; Type II: Carbonyl of a.a. 2 pointed ‘out’

(@) Typel 3 bend (b) Type Il B bend

¢3 ‘¢3

I g Il

QI‘C i QC.O d
Yo Ly,

Irving Geis/Geis Archives Trust. Copyright Howard Hughes Medical Institute. Reproduced with permission.



Secondary Structure and the Ramachandran Plot

- As it turns out, ¢/y are predictive of secondary structure:
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NMR and the Chemical Shift Index

- There is a very clever way of tigure out protein secondary structures without having to
do a ‘full on’ structural NMR study:

- The Chemical Shift Index

- In proton ('H) NMR, each zype of proton on each amino acid gives a distinct signal
whose location is called the chemical shift.

pH YCH;

Valine PP



CSI Index Continued...

- The Chemical Shift Index relies on the fact that the aH chemical shifts are
dependent on the secondary structure

Table II: Chemical Shift Values of «-Protons Used in the
Determination of Secondary Structure

residue «-! H range (ppm) residue a-! H range (ppm)
Ala 4.35 £ 0.10 Met 452 =010
Cys 4.65 % 0.10 Asn 475 = 0,10
Asp 4.76 £ 0.10 Pro 4.44 = 0.10
Glu 4.29 £ 0.10 Gln 4,37 £ 0.10
Phe 4.66 % 0,10 Arg 438 % 0.10
Gly 397 £ 0.10 Ser 4,50 £ 0.10
His 4,63 £ (.10 Thr 4,35 £ 010
Ile 395+ 0.10 Val 395 £0.10
Lys 436 £ 0.10 Trp 4.70 % 0.10
Leu 417 £ 0.10 Tyr 4.60 £ 0.10
- If aH chemical shift » than that in the table, then +1 Biochemistry 1992, 31, 1647-1651

- If aH chemical shift < than that in the table, then -1
- If aH chemical shift is within range of table, then 0

- Four or more -1’s not interrupted by a +1 = helix
- Four or more +1’s not interrupted by a -1 = B-strand

- Anything else = coil



Structural Motifs

Helix Bundle Beta Barrel Greek Key

3 2 @) @




Quaternary Structure

- Quaternary structure is represents non-covalent protein complexes, that is proteins
interacting with other proteins to form specific structures.

H

Hemoglobin

Ribosome 10S ATPase

Proteasome

- Protein/protein interactions are a crucial part of metabolism. Used to activate/inhibit
pathways that rely on specific activated enzymes.



For example....

Hemoglobin (cooperative)
A66% = ~98% (lungs) - ~32% (tissues)

I

I no cooperativity

I A38% = ~63% (lungs) - ~25% (tissues)
|

Percent saturation of HbA

20%
0%
0 20 50 100 150 200
t t
tissues ungs

Partial pressure of oxygen (torrs)

https://earth.callutheran.edu/Academic_Programs/Departments/BioDev/omm/jsmol
new/hemo/cooperative.html



Figuring Out Protein Structures

- X-ray Crystallography

refinement

crystal

diffraction
pattern

electron
density map

atomic

‘ model

Scattering from the atomsin a molecule

Waves in incident beam of X-rays
are in step with each other

The scattered waves are all shown as having the same amplitude -
in practice, the amplitude would vary in proportion to the

number of electrons associated with the atom BT Horth 1997

http://www.britishbiophysics.org.uk/what-is/crystal/crystal.html

- - Diffraction occurs according to
" Bragg’sLaw


http://www.britishbiophysics.org.uk/what-is/crystal/crystal.html

Structural NMR

- Mostly based on interproton distances acquired in ‘Nuclear Overhauser Etfect” (NOE)
experiments.

- NOEs provide a set of distance constraints for nearby protons (< 5A)

A |
%\ ..ﬁ: B b‘\l A Ao

A S

PNAS January 20, 2004 vol. 101 no.3 711-716

- We can also directly get ¢/y angle constraints from ‘Residual Dipolar Coupling’
experiments

- We then throw these constraints into a computer and ask it to come up with the most
satisfactory set of structures.

- This is why NMR ‘pdb’ (structure) files are so big]



Protein Complex Structures

- Cryo-Electron Microscopy is becoming an increasingly common way of measuring
structures of large protein complexes

Class
Average

Projection

- Cryo-EM of
GroEL, chaperone
extraordinaire

Structure, Vol. 12, 1129-1136, July, 2004



The ‘NEW’ Cryo-EM

- In 2013, someone published a Cry-EM structure that had a resolution close to X-ray
crystallography

- Within just a few years *everyone* was jumping on the Cryo-EM train

>
m

8004

1223
741

12504

10004 6004

559

m 50-40A
0 4.0-30A
m 3.0-20A
400+ B below 2.0 A

462

7504

5004

2504

Number of MP structures solved by cryo-EM SPA
Number of MP structures solved by cryo-EM SPA

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Year

Int. J. Mol. Sci. 2023, 24(19), 14785

- The difference is a new type of detector, which can make an image from thousands
fewer electrons



The End...
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